Math 261

Fall 2023
Lecture 4

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { B Pythagorean Thru } \\
& a^{2}+b^{2}=c^{2} \\
& \sin A=\frac{\text { opposite }}{\text { Hypotenuse }} \\
& \sin A=\frac{a}{c} \quad \csc A=\frac{c}{a} \\
& \operatorname{Cos} A=\frac{\text { adjacent }}{\text { Hypotenuse }} \\
& \operatorname{Cos} A=\frac{b}{c} \quad \operatorname{Sec} A=\frac{c}{b} \\
& \tan A=\frac{\text { opposite }}{\text { Adjacent }} \quad \tan A=\frac{a}{b} \quad \cot A=\frac{b}{a}
\end{aligned}
$$

Consider the triangle below:

1) find the missing log.

$$
\begin{aligned}
x^{2}+12^{2} & =13^{2} \\
x^{2}+144 & =169
\end{aligned} \rightarrow x^{2}=25
$$

2) find

$$
\begin{aligned}
& \sin B=\frac{12}{13} \\
& \cos B=\frac{5}{13} \\
& \tan B=\frac{12}{5}
\end{aligned}
$$

$\operatorname{Csc} B=\frac{13}{12}$
$\operatorname{Sec} B=\frac{13}{5}$
$\cot B=\frac{5}{12}$

Prove $\quad \sin ^{2} x+\cos ^{2} x=1 \sqrt{ }$

by Pythagorean Thru

Prove $1+\tan ^{2} x=\sec ^{2} x \checkmark$

$$
\begin{array}{rl}
x a & 1+\left(\frac{a}{b}\right)^{2}= \\
\tan x=\frac{a}{b} & 1+\frac{a^{2}}{b^{2}}=\frac{b^{2}}{b^{2}}+\frac{a^{2}}{b^{2}} \\
1=\frac{b^{2}}{b^{2}} & =\frac{a^{2}+b^{2}}{b^{2}}=\frac{c^{2}}{b^{2}}=\left(\frac{c}{b}\right)^{2} \\
\cos x=\frac{b}{c}, \operatorname{Sec} x=\frac{c}{b} & =\sec ^{2} x
\end{array}
$$

Aug 31-10:47 AM

$30^{\circ}-60^{\circ}-90^{\circ}$ Right Triangle.
Verify the Pythagorean Thu

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
1^{2}+(\sqrt{3})^{2} & =2^{2} \\
1+3 & =4 \\
4 & =4
\end{aligned}
$$

$\operatorname{Sin} 30^{\circ}=\frac{1}{2}$
$\operatorname{Cos} 30^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

$$
\begin{aligned}
1+3 & =4 \\
4 & =4
\end{aligned}
$$

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 60^{\circ}=\frac{1}{2} \\
& \tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}
\end{aligned}
$$

Aug 31-10:58 AM
$45^{\circ}-45^{\circ}-90^{\circ}$ right triangle

1) find its hypotenuse

$$
\begin{aligned}
& x^{2}+x^{2}=2^{2} \\
& 2 x^{2}=4 \quad x^{2}=2 \quad x=\sqrt{2} \\
& \sin 45^{\circ}=\frac{\sqrt{2}}{2} \\
& \cos 45^{\circ}=\frac{\sqrt{2}}{2} \\
& \tan 45^{\circ}=\frac{\sqrt{2}}{\sqrt{2}}=1
\end{aligned}
$$

$$
180^{\circ}=\pi \text { Radians }
$$

Find $30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° in radians.

$$
\begin{array}{ll}
30^{\circ}=\frac{180^{\circ}}{6}=\frac{\pi}{6} & 30^{\circ}=\frac{\pi}{6} \\
45^{\circ}=\frac{180^{\circ}}{4}=\frac{\pi}{4} & 45^{\circ}=\frac{\pi}{4} \\
60^{\circ}=\frac{180^{\circ}}{3}=\frac{\pi}{3} & 60^{\circ}=\frac{\pi}{3} \\
90^{\circ}=\frac{180^{\circ}}{2}=\frac{\pi}{2} & 90^{\circ}=\frac{\pi}{2}
\end{array}
$$

Aug 31-11:13 AM

Class Qt 3
$\begin{aligned} \text { Simplify } \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h \quad \text { LcD }}= & \\ =\frac{x^{2} \cdot 1-(x+h)^{2} \cdot 1}{x^{2}(x+h)^{2} \cdot h} \quad x^{2}(x+h)^{2} & \text { answer with } h=0 . \\ & \text { Box Your final Ans }\end{aligned}$

$$
=\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2} \cdot h}=\frac{x^{2}-x^{2}-2 x h-h^{2}}{x^{2}(x+h)^{2} \cdot h}=\frac{-2 x h-h^{2}}{x^{2}(x+h)^{2} \cdot h}
$$

$=\frac{\hbar(-2 x-h)}{x^{2}(x+h)^{2} \cdot \not x}=\frac{-2 x-h}{x^{2}(x+h)^{2}}$
for $h=0$

$$
\begin{aligned}
\frac{-2 x-0}{x^{2}(x+0)^{2}} & =\frac{-2 x}{x^{2} \cdot x^{2}} \\
& =\frac{-2}{x^{3}}
\end{aligned}
$$

